

Cardi-OH ECHO

Innovations in Diabetes and Cardiovascular Health

February 9, 2023

Today's Presenters

FACILITATOR

Goutham Rao, MD, FAHA Case Western Reserve University

DIDACTIC PRESENTER

Kathleen Dungan, MD, MPH The Ohio State University

Kelsey Ufholz, PhD
Case Western Reserve University

LEAD DISCUSSANTS

Goutham Rao, MD, FAHA
Case Western Reserve University

Danette Conklin, PhD
Case Western Reserve University

CASE PRESENTERS

Sarah Aldrich Renner, PharmD
UT Comprehensive Care Center, Internal Medicine
Amber Black, APRN
MetroHealth Cleveland Heights Medical Center

Disclosure Statements

- The following speakers have a relevant financial interest or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of their presentation*:
 - Danette Conklin, PhD; Kathleen Dungan, MD, MPH; Ian Neeland, MD; Adam T. Perzynski, PhD; Goutham Rao,
 MD; Christopher A. Taylor, PhD, RDN, LD, FAND; Yasir Tarabichi, MD; Jackson Wright, MD, PhD
- The remaining speakers have no financial relationships with any commercial interest related to the content of this activity:
 - Karen Bailey, MS, RDN, LD, CDCES; Kristen Berg, PhD; Elizabeth Beverly, PhD; Carolyn levers-Landis, PhD; Kelsey Ufholz, PhD; James Werner, PhD, MSSA
- The following members of the planning committee DO NOT have any disclosures/financial relationships from any ineligible companies:
 - Shari Bolen, MD; Richard Cornachione; Carolyn Henceroth; Gillian Irwin; Michael Konstan, MD; Elizabeth Littman; Devin O'Neill; Steven Ostrolencki; Ann Nevar; Claire Rollins; Catherine Sullivan

^{*} These financial relationships are outside the presented work.

^{**} For more information about exemptions or details, see www.acme.org/standards

Advances in Telehealth

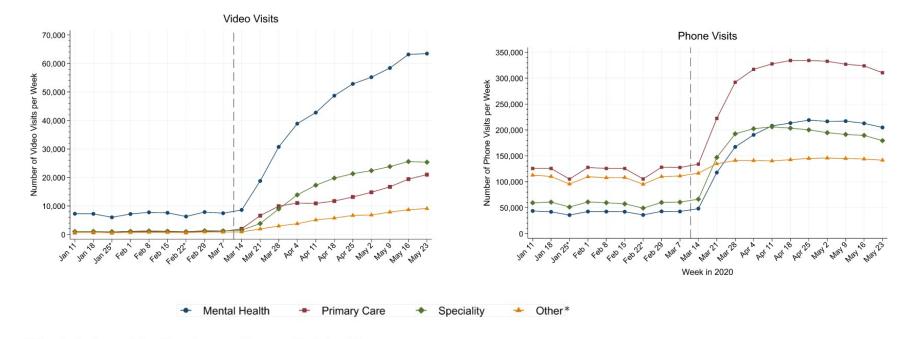
Kathleen Dungan, MD, MPH

Professor and Associate Director of Clinical Services
Division of Endocrinology, Diabetes & Metabolism
The Ohio State University

Kelsey Ufholz, PhD

Case Western Reserve University

- 1. In general terms, describe the recent growth in telehealth for diabetes care and related conditions.
- 2. Describe how to prepare patients for a telehealth visit.
- 3. Summarize the evidence for the benefits of telehealth in cardiovascular prevention.


What is "Telehealth"?

- Telemedicine / telehealth / virtual care / e-health /m-health
- Synchronous, real-time communication
- Both an audio and visual component
- With a patient and a medical professional
- In separate locations, connected by technology
- https://www.jmir.org/2020/3/e16791/
- https://pubmed.ncbi.nlm.nih.gov/34306296/

Rise in Telehealth VA—weekly visits January-April 2020



*Other includes social work, and some other non-physician visits Source: Veterans Affairs Virtual Access QUERI NEJM Catalyst (catalyst.nejm.org) © Massachusetts Medical Society

Primary Care Physician Survey

- Survey of 625 PCP
- Conducted by Dynata
- Sample approximates population benchmarks
- May 14-25, 2021

Callaghan et al. J Prim Care Community Health. 2022 Jan-Dec;13:21501319221110418. doi: 10.1177/21501319221110418.

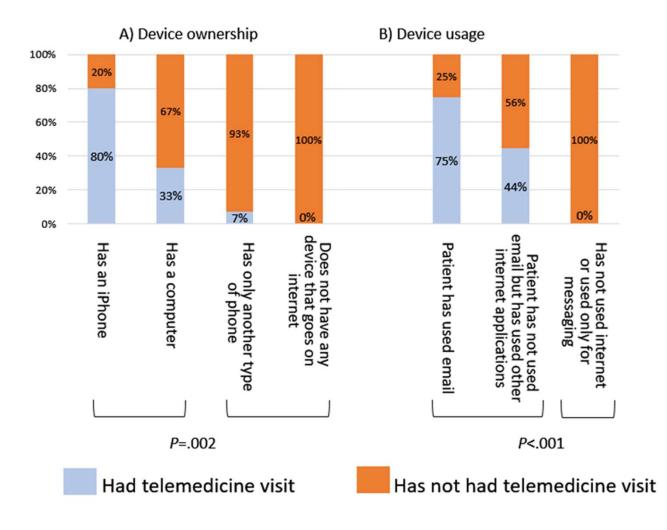
Telehealth Expansion was Limited

- Trilliant Health report
- 56 million telehealth patients from all-payer claims database between 3/1/2020-11/30/2021
 - Only 25% of Americans used telehealth
 - 80% of patients received only in-person care
 - 75% of physicians and 60% of patients said telehealth is more convenient for consumers
 - Only 36% of physicians find it more convenient

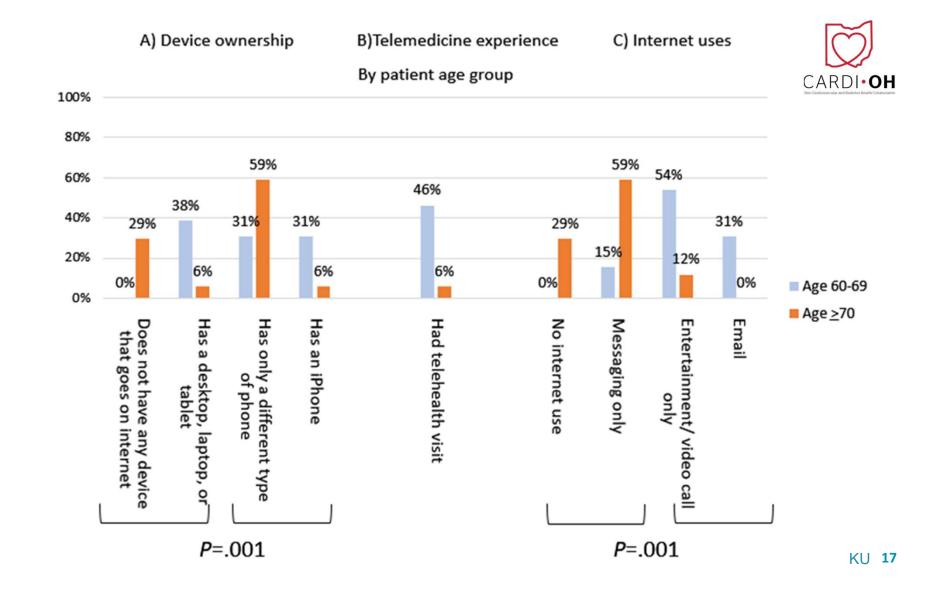
- Cultural competency
- Digital literacy
- Physician practice
- Psychosocial
- Systemic: access to cellular or internet, lack of interoperability

Pilot Study on Telemedicine Readiness in Seniors

- 30 primary care patients (aged 65-81) with a chronic condition
- February June 2021
- Survey during an in-person visit at UH
- 10 questions on devices, digital skills, telemedicine experience



How they use the internet


- Telemedicine visit 23%
- Video calls 30%
- Entertainment 17%
- Email 13%
- Messaging only 40%
- Never use the internet 17%
- Work, shopping, banking 0%

Device Ownership

- iPhone 17%
- Other smartphone 47%
- Computer/tablet 20%
- No device 17%
- >2 devices 13%

Overall Findings

- Patients liked that they could avoid Covid and skip the drive
- They were most concerned about losing their connection with their doctor and care quality
- Adults over age 70 are least comfortable with technology
- Cannot assume patients have or can use an internetcapable device

Traits of Successful Telemedicine

- Heterogeneity makes it difficult to draw broad conclusions
- Self-monitoring increases intervention success
- Different modalities
- Videoconferencing is preferred but relatively understudied
- For weight loss: portion control, increased PA, relapse prevention
- 1. https://www.jmir.org/2020/3/e16791/
- 2. https://pubmed.ncbi.nlm.nih.gov/34306296/

Virtual Care Preparation

- Choose well-lit quiet, private location
- Have camera held steady
- Wear comfortable clothes. Be ready if there is a body part you need to show the provider
- Focus on the appointment. Don't take an appointment with TV on or in the car
- Have questions, medication, and self-monitoring devices ready
- Close other apps on phone/computer
- Charge device before appointment
- Check internet connection

https://telehealth.hhs.gov/patients/preparing-for-a-video-visit/

Telehealth Team

- Schedulers:
 - ✓ Review expectations
 - ✓ Provide logs or device-specific instructions
 - ✓ Contacts the patient to schedule follow-up
- Nurses/Medical Assistants:
 - Pre-call: reduces failed video visits by half¹
 - ✓ Tech check
 - ✓ Medication reconciliation
 - ✓ Updates the chart with standard elements
 - ✓ Obtains glucose monitoring data
 - o Rooming:
 - ✓ Tech check
 - ✓ Keeps informed of the status in the queue

Status	Patient	Info
0	Suzie Q	Send link to 614-123-4567, 1st attempt 1/2/23, 2nd attempt 1/3/23
	Cardi O	Send link to 890-123-4567; patient to send log via portal
	Echo T	Send link to <u>cardio@yahoo.com</u> . Download in Media tab
	Tele H	Send link to 987-654-3210; sent invitation to link to clinic

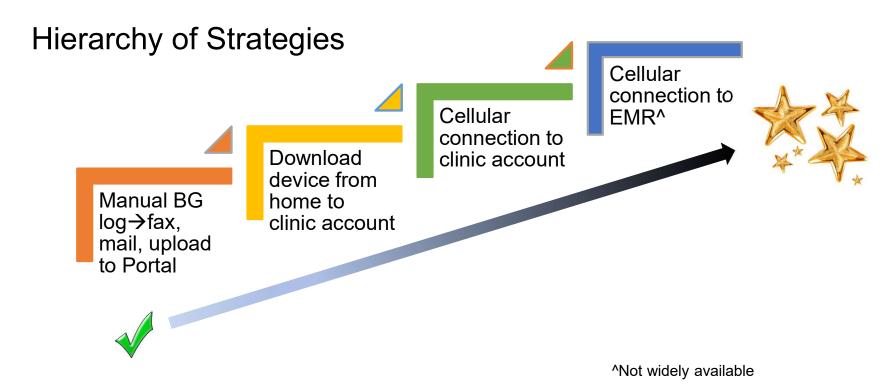
Not contacted

Roomed, need data

Rooming complete

Visit complete

Obtaining Glucose Data


- A formal process for implementing remote glucose monitoring within a clinic is recommended^{1,2}
- Consider focusing on 1 or 2 devices or platforms

Step	Role	Responsibilities
Set-up/training	CDCES*, PharmD, other trained staff	 Assess readiness/barriers Set up apps/connect to clinic Document how patient is connected Maintain clinic's device portals
Device download	CDCES*, PharmD, nurse/MA	Retrieve glucose monitoring reportsUpload to EMRCommunicate to provider

*CDCES: Certified Diabetes Care & Education Specialist

Obtaining Glucose Monitoring Data

Telehealth: Benefits in Diabetes Management

- Telehealth interventions improve A1C, body mass index, quality of life^{1,2}
- Systematic review
 (17 studies): best A1C when used in conjunction with automatic mobile transmission of data or real-time feedback to patients³

Table 2. Subgroup Analysis of Mean Difference of Pre-Post reduction in Hemoglobin A1c (%) Between the Telehealth and the Comparison Groups								
SUBGROUPS	NO. OF SUBJECTS (STUDIES)	MEAN DIFFERENCE	f², %	P-VALUE FOR HETEROGENEITY IN SUBGROUPS	P-VALUE FOR HETEROGENEITY B/W SUBGROUPS			
Transmission methods					<0.001			
Automatic transmission	558 (5)	-0.57 (-0.60, -0.54)	94	<0.001				
Automatic mobile transmission	473 (3)	-0.61 (-0.65, -0.56)	94	<0.001				
Internet/web	1,181 (7)	-0.24 (-0.25, -0.23)	99	<0.001				
Feedback methods					<0.001			
Real time	479 (3)	-0.77 (-0.82, -0.72)	93	<0.001				
Asynchronous	1,077 (8)	-0.23 (-0.24, -0.22)	98	<0.001				
Combination	656 (4)	-0.55 (-0.57, -0.52)	98	<0.001				
Lifestyle modification					<0.001			
PA + nutrition	891 (9)	-0.48 (-0.52, -0.45)	96	<0.001				
PA + nutrition + medication management	1,173 (5)	-0.28 (-0.29, -0.27)	100	<0.001				
Nutrition + medication management	148 (1)	-0.70 (-0.77, -0.63)	-	-				

^{1.} De Groot et al. World J Diabetes. 2021;12(2):170-97

^{2.} Eberle C, Stichling S. J Med Internet Res. 2021;23(2):e23244

^{3.} Michaud et al. Telemed J E Health. 2021;27(2):124-36

Cardiovascular Risk Factors

- Systematic review¹
 - Few studies comparing synchronous telemedicine versus inperson visits.
 - However, in the primary care setting, telemedicine was not inferior to in-person visits for diabetes, hypertension, and hyperlipidemia

Thank you!

Questions/Discussion