

In partnership with:

Cardi-OH ECHO

Innovations in Diabetes and Cardiovascular Health

March 2, 2023

Today's Presenters

FACILITATOR

Goutham Rao, MD, FAHA
Case Western Reserve University

DIDACTIC PRESENTER

lan Neeland, MD, FAHA, FACC Case Western Reserve University

LEAD DISCUSSANTS

Ian Neeland, MD, FAHA, FACC Case Western Reserve University

Chris Taylor, PhD, RD, LD The Ohio State University

CASE PRESENTERS

Nathaniel Harris, MD
UC Health West Chester Family Medicine

Goutham Rao, MD, FAHA Case Western Reserve University

Disclosure Statements

- The following speakers have a relevant financial interest or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of their presentation*:
 - Danette Conklin, PhD; Kathleen Dungan, MD, MPH; Ian Neeland, MD; Adam T. Perzynski, PhD; Goutham Rao,
 MD; Christopher A. Taylor, PhD, RDN, LD, FAND; Yasir Tarabichi, MD; Jackson Wright, MD, PhD
- The remaining speakers have no financial relationships with any commercial interest related to the content of this activity:
 - Karen Bailey, MS, RDN, LD, CDCES; Kristen Berg, PhD; Elizabeth Beverly, PhD; Carolyn levers-Landis, PhD; Kelsey Ufholz, PhD; James Werner, PhD, MSSA
- The following members of the planning committee DO NOT have any disclosures/financial relationships from any ineligible companies:
 - Shari Bolen, MD; Richard Cornachione; Carolyn Henceroth; Gillian Irwin; Michael Konstan, MD; Elizabeth Littman; Devin O'Neill; Steven Ostrolencki; Ann Nevar; Claire Rollins; Catherine Sullivan

^{*} These financial relationships are outside the presented work.

^{**} For more information about exemptions or details, see www.acme.org/standards

Methods for Assessing Cardiovascular Risk

Ian J. Neeland, MD, FAHA, FACC

Director, UH Center for Cardiovascular Prevention Director, Translational Science Unit

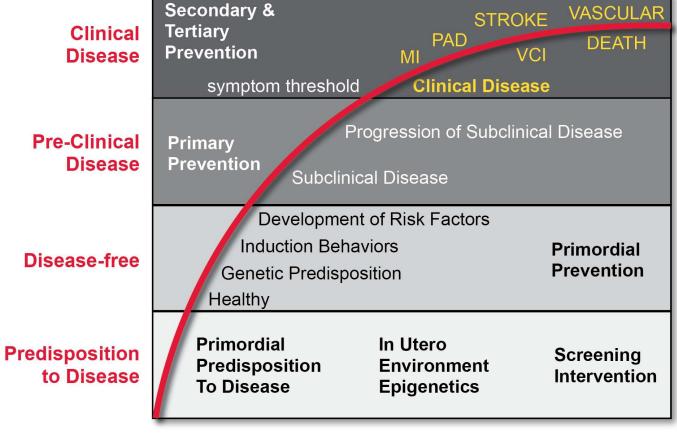
Co-Director, Center for Integrated and Novel Approaches in Vascular-Metabolic Disease (CINEMA)

Harrington Heart and Vascular Institute

University Hospitals Cleveland Medical Center

Associate Professor of Medicine

Case Western Reserve University


Learning Objectives

- 1) Discuss the use of coronary calcium scoring for identifying cardiovascular risk.
- 2) List and describe novel cardiovascular markers and their potential use in primary care.
- Describe newer methods for assessing cardiovascular risk in minority populations.

The Cardiovascular Risk "Timeline"

Time →

Traditional ASCVD Risk Factors

Non-Modifiable

Age

Men ≥ 45 years old Women ≥ 55 years old

Sex

Race

Family History

Modifiable

High Cholesterol

Smoking

High Blood Pressure

Diabetes

Obesity

Alcohol

Physical Inactivity

Pooled Cohort Equations Risk Calculator

10-year risk of MI, Stroke, or CV death

- Age
- Sex
- Race (Black/White)
- Total Cholesterol
- HDL Cholesterol
- Systolic BP
- Hypertension
- Diabetes
- Current smoking

Estimator	Clinicians	Patients	About	
ASCVD Risk Estimator*				
10-Year ASC	VD Risk	Lifetime AS0		
18.2 ^{% calculated}		Lifetime Risk Calculator only provides lifetime risk estimates for individuals 20 to 59 years of age.		
9.6 % risk with optimal risk factors**				
Recomr	nendation I	Based On C	Calcul 🔰	
Total Cho	lesterol	180		
HDL - Ch (mg/dL)	olesterol	45		
Systolic E Pressure	Blood	140		
Treatmer Hyperten		Y	N	

Pooled Cohort Equations Risk Calculator

10-year risk of MI, Stroke, or CV death

- Age
- Sex
- Race (Black/White)
- Total Cholesterol
- HDL Cholesterol
- Systolic BP
- Hypertension
- Diabetes
- Current smoking

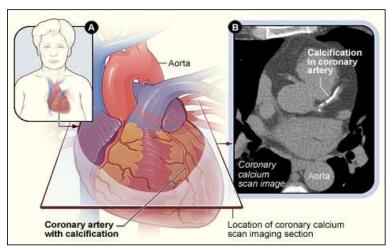
PCE may overestimate risk in some and underestimate risk in others

Estimator	Clinicians	Patients	About	
ASCVD Risk Estimator*				
	% calculated risk with optimal risk factors**	Lifetime ASCVD Risk Lifetime Risk Calculator only provides lifetime risk estimates for individuals 20 to 59 years of age.		
Recomi	mendation E	Based On C	alcul 🔰	
Total Cho	olesterol	180		
HDL - Ch (mg/dL)	olesterol	45		
Systolic E Pressure		140		
Treatmer Hyperter		Υ	N	

Additional tests to refine risk assessment

- Recognizing the imprecision of CVD risk prediction and the uncertainty clinicians and patients may encounter regarding the potential benefits of drug therapy for an individual patient at borderline or intermediate 10-year ASCVD risk, additional testing is reasonable.
- In general, identification of subclinical atherosclerosis rather than use of serum biomarkers is preferred, because of the extensive body of evidence demonstrating the superior utility of atherosclerosis disease assessment, particularly with CAC measurement, over any serum biomarker for the prediction of future ASCVD events.
- Other modalities for assessing subclinical atherosclerosis, including carotid intimamedia thickness and carotid plaque burden assessment, are weaker predictors of overall ASCVD events compared with the CAC score.

Learning Objectives



- 1) Discuss the use of coronary calcium scoring for identifying cardiovascular risk.
- 2) List and describe novel cardiovascular markers and their potential use in primary care.
- 3) Describe newer methods for assessing cardiovascular risk in minority populations.

Coronary Artery Calcium Scoring

Heart Check America
Founded 1992
First Scanners in Chicago and LA

NHLBI, 2000

Many supporters, 1990

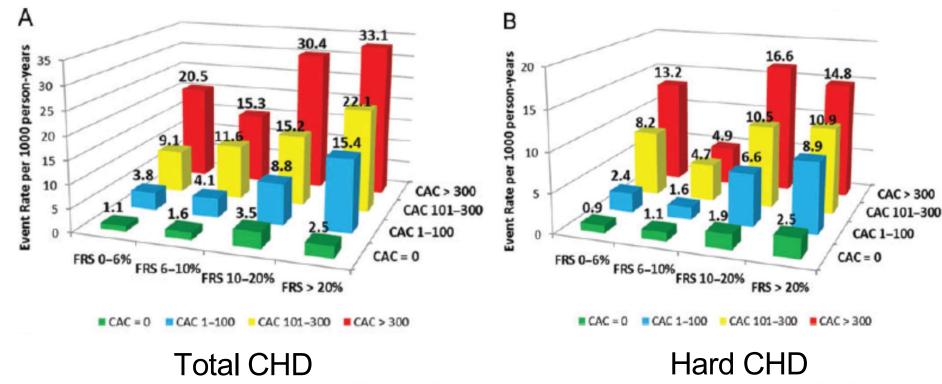
The Heinz Nixdorf RECALL (Risk Factors, Evaluation of Coronary Calcium and Lifestyle) Study

2000, many sponsors

Coronary Calcium as a Predictor of Coronary Events in Four Racial or Ethnic Groups

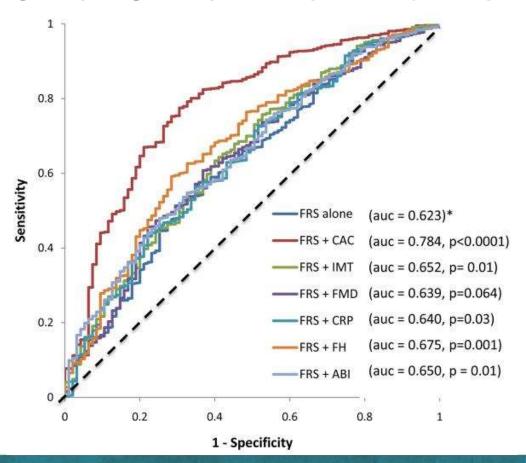
Robert Detrano, M.D., Ph.D., Alan D. Guerci, M.D., J. Jeffrey Carr, M.D., M.S.C.E., Diane E. Bild, M.D., M.P.H., Gregory Burke, M.D., Ph.D., Aaron R. Folsom, M.D., Kiang Liu, Ph.D., Steven Shea, M.D., Moyses Szklo, M.D., Dr.P.H., David A. Bluemke, M.D., Ph.D., Daniel H. O'Leary, M.D., Russell Tracy, Ph.D., Karol Watson, M.D., Ph.D., Nathan D. Wong, Ph.D., and Richard A. Kronmal, Ph.D.

Coronary-Artery Calcium Score		Major Coronary Event	ì		Any Coronary Event	
	No./No. at Risk	Hazard Ratio (95% CI)	P Value	No./No. at Risk	Hazard Ratio (95% CI)	P Value
0	8/3409	1.00		15/3409	1.00	
1-100	25/1728	3.89 (1.72-8.79)	< 0.001	39/1728	3.61 (1.96-6.65)	< 0.001
101–300	24/752	7.08 (3.05–16.47)	< 0.001	41/752	7.73 (4.13–14.47)	< 0.001
>300	32/833	6.84 (2.93-15.99)	<0.001	67/833	9.67 (5.20-17.98)	< 0.001
Log ₂ (CAC+1);		1.20 (1.12-1.29)	< 0.001		1.26 (1.19-1.33)	< 0.001


^{*} CAC denotes coronary-artery calcium score, and CI confidence interval.

[†] Major coronary events were myocardial infarction and death from coronary heart disease.

Each unit increase in log₂(CAC+1) represents a doubling of the coronary-artery calcium score.


Adding CAC to Standard Risk Factors

CAC vs. Other Risk Markers

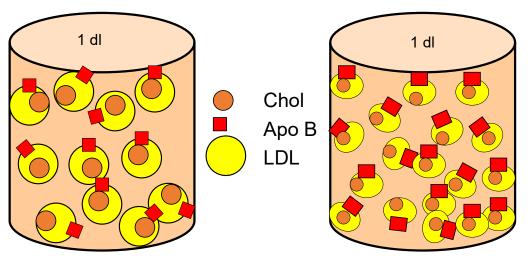
CAC improves ASCVD risk discrimination to a much greater degree than any other cardiovascular risk factor

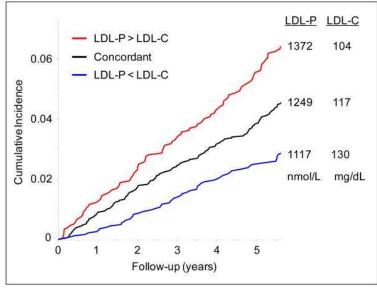
Yeboah et al. *JAMA*. 2012;308:788-795

Using 10-year ASCV	D risk estimate plus o	coronary artery calci	um (CAC) score to g	uide statin therapy
Patient's 10-year atherosclerotic cardiovascular disease (ASCVD) risk estimate:	<5%	5-7.5%	>7.5-20%	>20%
Consulting ASCVD risk estimate alone	Statin not recommended	Consider for statin	Recommend statin	Recommend statin
Consulting ASCVD risk estimate + CAC				
If CAC score =0	Statin not recommended	Statin not recommended	Statin not recommended	Recommend statin
If CAC score >0	Statin not recommended	Consider for statin	Recommend statin	Recommend statin
Does CAC score modify treatment plan?	CAC not effective for this population	CAC can reclassify risk up or down	CAC can reclassify risk up or down	CAC not effective for this population

Learning Objectives

- 1) Discuss the use of coronary calcium scoring for identifying cardiovascular risk.
- 2) List and describe novel cardiovascular markers and their potential use in primary care.
- 3) Describe newer methods for assessing cardiovascular risk in minority populations.


Risk Enhancing Factors


- Family history of premature ASCVD (males, age <55 y; females, age <65 y)
- Primary hypercholesterolemia (LDL-C, 160-189 mg/dL [4.1-4.8 mmol/L]; non-HDL-C 190-219 mg/dL [4.9-5.6 mmol/L])*
- Metabolic syndrome (increased waist circumference [by ethnically appropriate cutpoints], elevated triglycerides
 [>150 mg/dL, nonfasting], elevated blood pressure, elevated glucose, and low HDL-C [<40 mg/dL in men;
 <50 mg/dL in women] are factors; a tally of 3 makes the diagnosis)
- Chronic kidney disease (eGFR 15-59 mL/min/1.73 m2 with or without albuminuria; not treated with dialysis or kidney transplantation)
- . Chronic inflammatory conditions, such as psoriasis, RA, lupus, or HIV/AIDS
- History of premature menopause (before age 40 y) and history of pregnancy-associated conditions that increase later ASCVD risk, such as preeclampsia
- · High-risk race/ethnicity (e.g., South Asian ancestry)
- . Lipids/biomarkers: associated with increased ASCVD risk
 - Persistently elevated,* primary hypertriglyceridemia (≥175 mg/dL, nonfasting)
 - If measured:
 - Elevated high-sensitivity C-reactive protein (≥2.0 mg/L)
 - Elevated Lp(a): A relative indication for its measurement is family history of premature ASCVD.
 An Lp(a) ≥50 mg/dL or ≥125 nmol/L constitutes a risk-enhancing factor, especially at higher levels of Lp(a).
 - Elevated apoB (≥130 mg/dL): A relative indication for its measurement would be triglyceride ≥200 mg/dL.
 A level ≥130 mg/dL corresponds to an LDL-C >160 mg/dL and constitutes a risk-enhancing factor
 - ABI (<0.9)

Advanced Lipoprotein Testing

110 mg/dl
A
1200 nmol/L
90 mg/dl
130 mg/dl

LDL-C
Pattern

LDL Particle #

Apo B

NHDL

B 1800 nmol/L 120 mg/dl 160 mg/dl

110 mg/dl

Otvos et al. *J Clin Lipid*. 2011;5:105-113

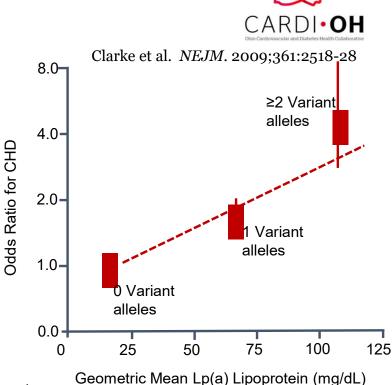
Lipoprotein (a)

Proatherosclerotic

Inhibits fibrinolysis

plasminogen

↑ PAI 1


Intimal retention

Proinflammatory

Carrier of ox-PL

Platelet activation

- Plasma concentrations of lipoprotein(a) are primarily genetically determined (90% of plasma concentration)
- Both mass (mg/dL) and particle concentration (nmol/L) assays— cannot easily convert between these
 - Values ≥50 mg/dL or ≥125 nmol/L considered elevated
- ~20% of the population has elevated Lp(a)
 - Blacks have higher levels than whites

3145 cases with CAD, 3352 control subjects
Gene score 0-4 variant alleles associated with Lp(a) and CHD

23

Circulation: Cardiovascular Quality and Outcomes

Volume 12, Issue 11, November 2019 https://doi.org/10.1161/CIRCOUTCOMES.119.006078

CARDIOVASCULAR PERSPECTIVE

Do Risk-Enhancing Factors Enhance Risk Estimation?

Ralph H. Stern, PhD, MD and Robert D. Brook, MD

Key Words: cardiology ■ cholesterol ■ coronary artery disease ■ guideline ■ risk

"If REFs are to be considered, they must be incorporated into a validated model. Such models only exist for hsCRP (which does not improve population risk stratification) and CAC. Without such a model clinicians using a REF (or worse, many REFs) will erroneously stack the deck in favor of higher risks and over-value the information provided."

"Absent convincing evidence that REFs improve the risk stratification of the PCE and given the paucity of validated models that incorporate them, clinicians should continue to rely on the PCE for primary prevention decisions, understanding that the risk estimates represent frequentist probabilities."

Learning Objectives

- 1) Discuss the use of coronary calcium scoring for identifying cardiovascular risk.
- 2) List and describe novel cardiovascular markers and their potential use in primary care.
- Describe newer methods for assessing cardiovascular risk in minority populations.

AHA SCIENTIFIC STATEMENT

CARDI•**OH**

Cardiovascular Health in African Americans

A Scientific Statement From the American Heart Association

RESULTS: The higher prevalence of traditional cardiovascular risk factors (eg, hypertension, diabetes mellitus, obesity, and atherosclerotic cardiovascular risk) underlies the relatively earlier age of onset of cardiovascular diseases among African Americans. Hypertension in

Carnethon et al. Circulation. 2017;136:e9393-e423

Racial Differences in Cardiovascular Biomarkers in the General Population Hackler et al. *JAHA*. 2019;8:e021729

Conclusions—Significant racial differences were seen in biomarkers reflecting lipids, adipokines, and biomarkers of endothelial function, inflammation, myocyte injury, and neurohormonal stress, which may contribute to racial differences in the development and complications of CVD. (J Am Heart Assoc. 2019;8:e012729. DOI: 10.1161/JAHA.119.012729.)

Differences in estimates for 10-year risk of cardiovascular disease in Black versus White individuals with identical risk factor profiles using pooled cohort equations: an in silico cohort study Interpretation The PCE might generate substantially divergent cardiovascular disease

Interpretation The PCE might generate substantially divergent cardiovascular disease risk estimates for Black versus White individuals with identical risk profiles, which could introduce race-related variations in clinical recommendations for cardiovascular disease prevention.

Vasan et al. Lancet Dig Health. 2022;4:e55-63

Thank you!

Questions/Discussion