

CARDI•OH

Ohio Cardiovascular and Diabetes Health Collaborative

In partnership with:

GOVERNMENT

RESOURCE CENTER

Heritage College of Osteopathic

Cardi-OH ECHO Health Equity and Cardiovascular Risk

February 8, 2024

CARDI**·OH**

Ohio Cardiovascular and Diabetes Health Collaborative

About Cardi-OH

Founded in 2017, the mission of Cardi-OH is to improve cardiovascular and diabetes health outcomes and eliminate disparities in Ohio's Medicaid population.

WHO WE ARE: An initiative of health care professionals across Ohio's seven medical schools.

WHAT WE DO: Identify, produce, and disseminate evidence-based cardiovascular and diabetes best practices to primary care teams.

HOW WE DO IT: Best practices resources are available via an online library at Cardi-OH.org, including monthly newsletters, podcasts, webinars, and virtual clinics using the Project ECHO® virtual training model.

Learn more at Cardi-OH.org

Cardi-OH ECHO Team

FACILITATOR

Goutham Rao, MD Case Western Reserve University

CONTENT EXPERTS

Karen Bailey, MS, RDN, LD, CDCES Ohio University Kristen Berg, PhD Case Western Reserve University Elizabeth Beverly, PhD Ohio University Danette Conklin, PhD Case Western Reserve University

Kathleen Dungan, MD, MPH The Ohio State University Adam Perzynski, PhD Case Western Reserve University Marilee Clemons, PharmD University of Toledo Chris Taylor, PhD

The Ohio State University

Kelsey Ufholz, PhD Case Western Reserve University James Werner, PhD, MSSA Case Western Reserve University Jackson Wright, MD, PhD Case Western Reserve University

Disclosure Statements

- The following speakers and subject matter experts have a relevant financial interest or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of their presentation*:
 - Danette Conklin, PhD; Kathleen Dungan, MD, MPH; Adam T. Perzynski, PhD; Christopher A. Taylor, PhD, RDN, LD, FAND; Jackson Wright, MD, PhD
- The remaining speakers and subject matter experts have no financial relationships with any commercial interest related to the content of this activity:
 - Karen Bailey, MS, RDN, LD, CDCES; Kristen Berg, PhD; Elizabeth Beverly, PhD; Merilee Clemons, PharmD; Revital Gordodeski Baskin, MD; Allyson Hughes, PhD; George Matar, MD; Kelsey Ufholz, PhD; Goutham Rao, MD; James Werner, PhD, MSSA
- The following members of the planning committee DO NOT have any disclosures/financial relationships from any ineligible companies:
 - Shari Bolen, MD; Anderson Christopher; Richard Cornachione; Carolyn Henceroth; Gillian Irwin; Michael Konstan, MD; Elizabeth Littman; Devin O'Neill; Steven Ostrolencki; Ann Nevar; Claire Rollins; Catherine Sullivan

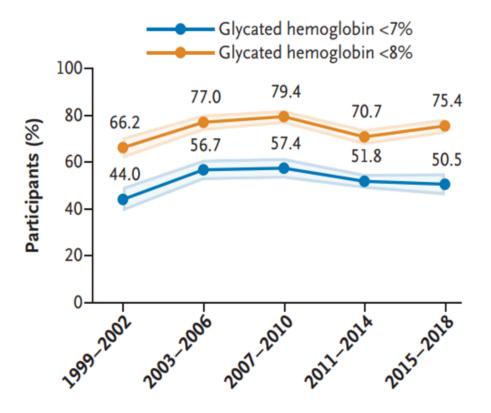
^{*} These financial relationships are outside the presented work.

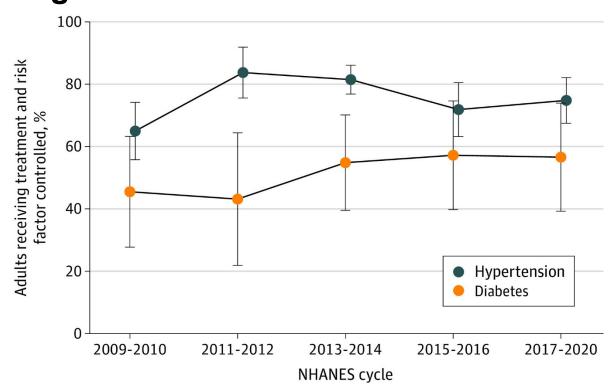
^{**} For more information about exemptions or details, see www.acme.org/standards

Promoting Diabetes Control

Kathleen Dungan, MD, MPH

Professor and Interim Director Division of Endocrinology, Diabetes & Metabolism The Ohio State University


Learning Objectives


- 1. List and describe a minimum of three barriers specific subpopulations face in achieving control of diabetes
- 2. Describe alternatives to newer medications for control of diabetes for patients with limited financial means
- Describe the use of continuous glucose monitoring for patients with diabetes and effective strategies to promote uptake among minority patients

Stagnation of HbA1C—NHANES data

All Adults

Age 20-44

Fang M, et al.. NEJM 2021;384:2219-2228.

Aggarwal et al. JAMA. 2023;329(11):899-909. doi: 10.1001/jama.2023.2307.

Barriers to Glycemic Control

Patients

- Cost/access to medication
- SDOH
- Limited understanding of progressive nature of DM
- Access to DSMES, MNT
- Fear of side effects
- Complexity
- Communication/trust
- Lack of support

SDOH=social determinants of health DSMES=diabetes self-management education and support MNT=medical nutrition therapy

Providers

- Time constraints/competing priorities
- Lack of goals for therapy
- Concern about side effects
- Concern about patient ability/needs

Systems/Payers

- Lack of population health initiatives
- Lack of team-based approach
- Lack of transparency in formulary

Addressing Therapeutic Inertia in 2020 and Beyond: A 3-Year Initiative of the American Diabetes Association, Clin Diabetes. 2020 ;38(4):371-381. doi: 10.2337/cd20-0053. Blonde et al. Adv Ther 2018;35:1735-45

Social Determinants/Populations

Determinant	Context
Race/ethnicity	Implicit bias, discrimination, trust with providers, culture/values, stress
Gender	Caregiver role, stereotypes, body image
Geographic region	Access to care, health policy, built environment
Food insecurity	Obesity, hypoglycemia
Built environment	Transportation, access to healthcare, internet/cellular access, food deserts, safe space to exercise
Housing instability	Ability to cook at home, establish a routine
Social support	Complex regimens, manage stress, transportation
Education/literacy	Stigma, complex regimens/technology
Occupation	Complex regimens/self-care, income
Disability	Limitations of built environment, stereotypes

Hill-Briggs et al. ADA Scientific Statement. Diabetes Care. 2020;44(1):258–79. doi: 10.2337/dci20-0053.

Best Practice Actions to Overcome Therapeutic Inertia

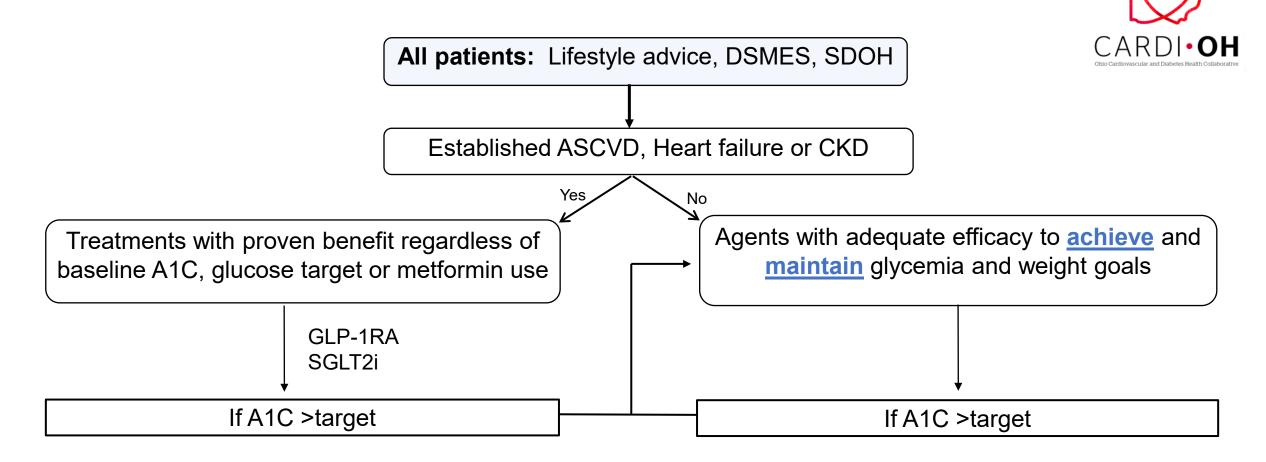
Clinician-Related

- Set clear glycemic goals and timelines with patients
- Empower team members to independently manage medications (algorithms or protocols)
- Use technologies/CGM to adjust therapy between A1C tests
- Develop and refer to a team of clinicians and community resources

System-Related

- Identify patients with diabetes who are newly diagnosed or not meeting goals with an A1C >9%
- Support, empower, and use a team approach
- Provide access to DSMES services
- Address SDOH in community
- Use technologies in office practices

El-Sayed et al. Diabetes Care 2023;46(Suppl. 1):S10–S18



Overcoming

Therapeutic

14

Pharmacologic Management, ADA/EASD Consensus 2022

DSMES=diabetes self-management education and support, SDOH=social determinants of health, ASCVD=atherosclerotic cardiovascular disease, CKD=chronic kidney disease, GLP-1 glucagon-like peptide-1, SGLT2i=sodium-glucose cotransporter-2 inhibitor

Cost as a barrier

- $\frac{1}{2}$ of adults with diabetes reported financial stress¹
- Up to 25% of patients who are prescribed insulin report cost-related insulin underuse²
- 2/3 of people with chronic illness and cost-related non-adherence never shared this with their HCP³

^{1.} Patel et al. Med Care 2016;54:796–803

^{2.} Herkert et al. JAMA Intern Med 2019;179:112–114

^{3.} Piette et al. Arch Intern Med. 2004;164(16):1749-55. doi: 10.1001/archinte.164.16.1749.

Pros/Cons of Low-Cost DM Medications¹

Class	Examples	Pros	Cons
Sulfonylurea	Glimepiride Glipizide	Preferred for some types of monogenic DM	Hypoglycemia ^a Weight gain Shorter durability
Glinides	Repaglinide Nateglinide	Flexible	Hypoglycemia Weight gain Complexity (QAC)
Thiazolidinedione	Pioglitaone	Longest durability ^b CV benefit NASH/NAFLD benefit	Weight gain Heart failure/edema ^c Fracture risk
Alpha-glucosidase inhibitors	Acarbose	No hypoglycemia or weight gain	Gastrointestinal side effects Complexity (QAC)

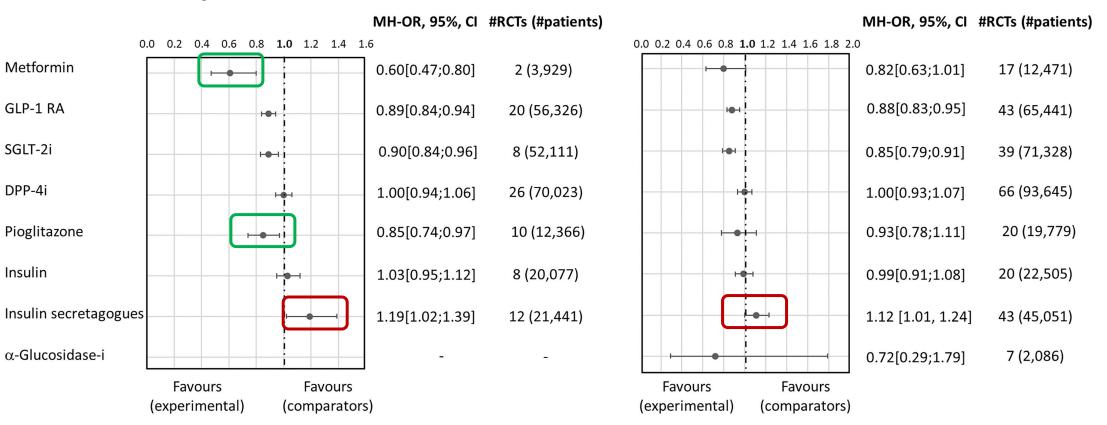
- a) Avoid glyburide and older generation SFU due to higher hypoglycemia risk
- b) vs. SFU or Metformin^{2,3}
- c) 15/30 mg conferred similar CV benefit and DM prevention with lower risk of HF and weight gain⁴
- 1. ElSayad et al. Diabetes Care. 2023 Jan 1;46(Suppl 1):S140-S157. doi: 10.2337/dc23-S009
- 2. Dormandy et al. Lancet 2005;366:1279-89
- 3. Kahn et al. N Engl J Med. 2006;355(23):2427-43. doi: 10.1056/NEJMoa066224.
- 4. Spence et al; Diabetes Obes Metab. 2022;24(6):1150-1158. doi: 10.1111/dom.14687

UKPDS: Low-Cost Drugs and Complications

Cardiovascular and mortality benefit emerges after median 8.5 years post-trial

	1997		2007	
	RRR (%)	P-value	RRR (%)	P-value
Any diabetes related endpoint	12	0.029	9	0.040
Microvascular complication	25	0.0099	24	0.001
Myocardial infarction	16	0.052	15	0.014
All cause mortality	6	0.44	13	0.007

HbA1C at end of Intervention phase


- SFU or insulin vs. conventional therapy: 8.5 vs. 7.9%
- Metformin vs. conventional therapy: 8.9 vs 8.4%

RRR = *Relative Risk Reduction, P* = *Log Rank*

Potential CV Effects of Low-Cost Drugs

All Cause Mortality

3-point MACE

GLP-1 RA

SGLT-2i

DPP-4i

Insulin

Manucci et al. Diabetes Obes Metab. 2023;25(2):444-453. doi: 10.1111/dom.14888.

Insulin Costs

Non-Medicare

- Lilly insulins for \$35/month¹
- Walmart:
- syringes box of 100- \$12

	1 Vial	¢/unit	5 Pen	¢/unit
Aspart Premix	\$72	7.3	\$86	5.7
Novolin 70/30	\$25	2.5	\$43	2.9

	Monitor	Strips (#50)	Lancet (#100)
Relion	\$20	\$9	\$2
TrueMetrix	\$35	\$15	\$9

- Medicare Inflation Reduction Act^{2,3}
- Starting July 1, 2023, \$35/month cap on insulin (Part B)
- Caps cost of prescription drugs at \$2,000/year (Part D)
- Allows Medicare to negotiate price of drugs with manufacturers

1. <u>https://www.insulinaffordability.com/</u>

2. <u>https://www.hhs.gov/about/news/2023/01/24/new-hhs-report-finds-major-savings-americans-who-use-insulin-thanks-president-bidens-inflation-reduction-act.html#:~:text=The%20insulin%20provisions%20of%20this,a%20month's%20supply%20of%20insulin.</u>

3. https://diabetes.org/sites/default/files/2022-08/What-People-with-Diabetes-Need-to-Know-about-the-Inflation-Reduction-Act.pdf

Tips for Using Human Insulins

• Regular:

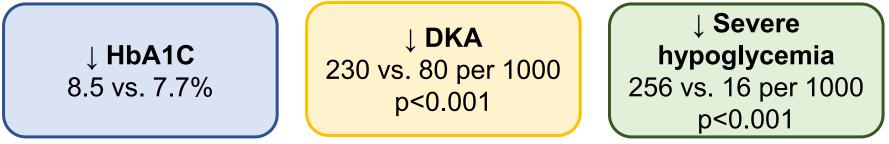
• 30 minutes before meals

• NPH:

- Do not skip meals
- HS snack may be needed
- Time exercise as NPH wears off

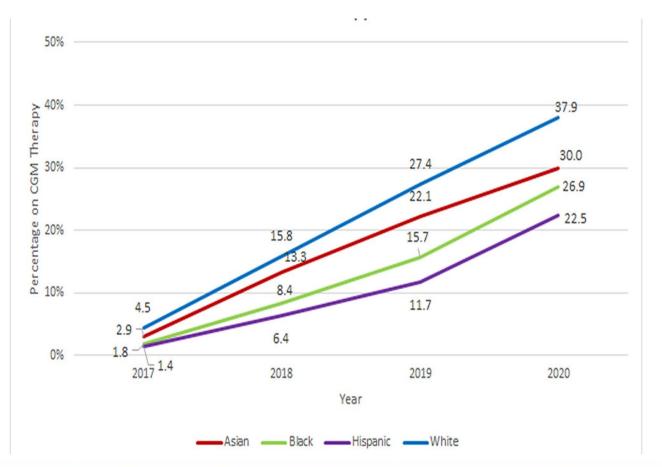
• 70/30 premix

 Daily dose is split 2/3 before BK, 1/3 before supper



 Donnor and Sarkar. Endotext.org. South Dartmouth (MA): MDText.com, Inc.; 2000–. PMID: 25905175

Disparities in CGM Use – T1D



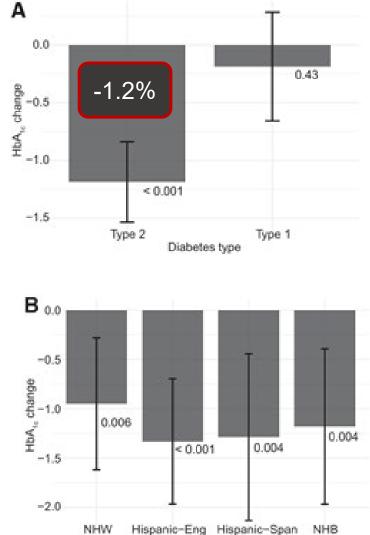
- T1D Exchange Quality Improvement Collaborative (N=11,469)
- 48% used CGM
- CGM use associated with

NHW (50%) vs. NHB (18%) or Hispanic (38%)
inequities persisted after adjustment for insurance

Disparities in Device Use Among Medicare Beneficiaries—T1D

"Previous studies have documented numerous potential reasons ..., including language barriers, access to quality health care, and implicit bias (3, 9)... Among Black and Hispanic young adults with T1D who had heard of diabetes technology, <u>most had not been offered it by their</u> providers (16)."

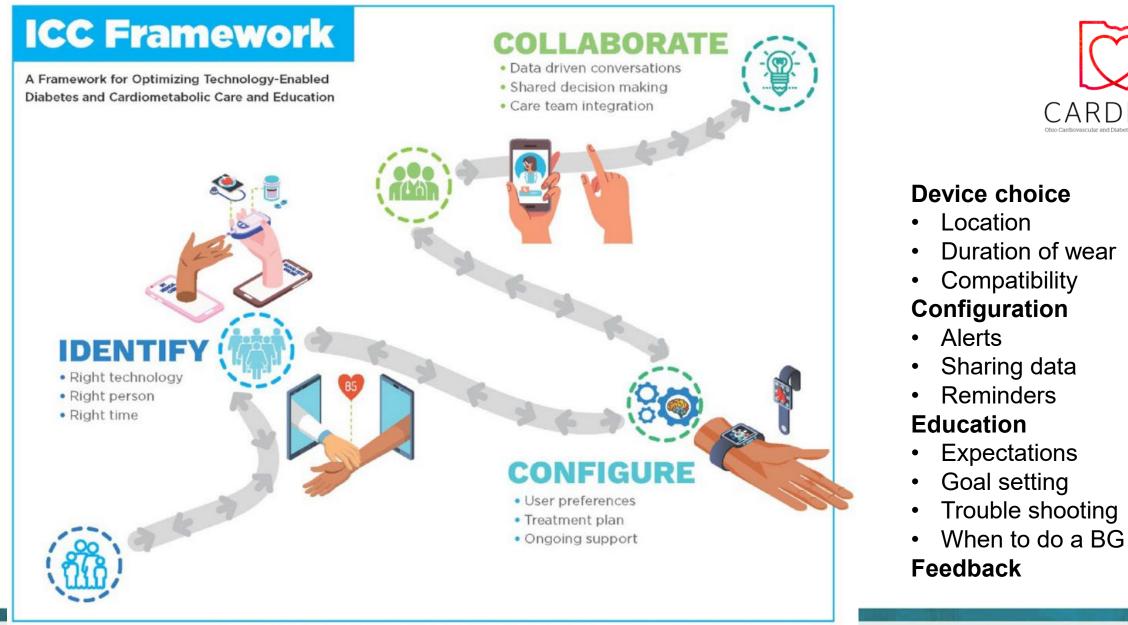
Card


Kommareddi et al. J Clin Endocrinol Metab. 2023 Jun 16;108(7):e388-e395. doi: 10.1210/clinem/dgad046.

Effect of Fully Subsidized CGM in Colorado Medicaid Α

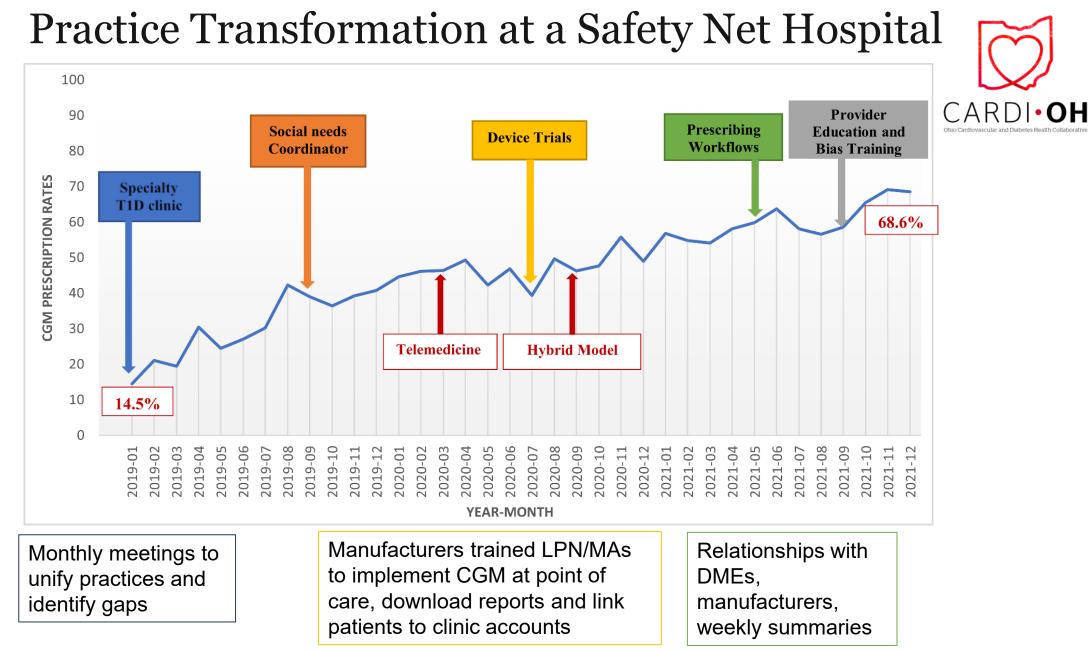
Predictors of Use:

- CGM prescriptions + Dispenses
- > Endocrinologist prescriber
- > Insulin use
- ≻T1D
- ≻ High HbA1C
- Repeat fill
- ➤ MDI/pump
- Fill adherence (MPR)
- ≻ High HbA1c


Race/ethnicity was not a factor

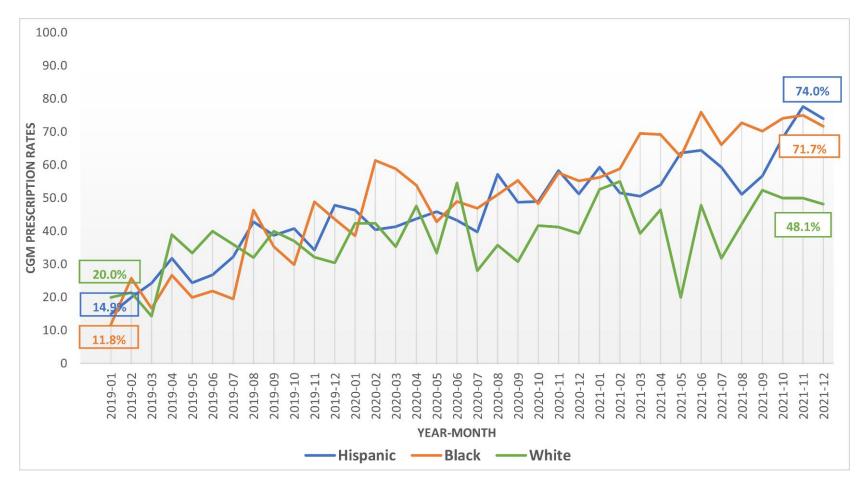
Racial/ethnic

NHB.


NHW

Copyright @ 2020 Association of Diabetes Care & Education Specialists. All rights reserved. Reproduction or republication strictly prohibited without prior written permission.

Greenwood et al. The Diabetes Educator 2020;46:315


CARDI**•OH**

• Mathias et al. *Diabetes Care* 2022;45(10):2231–2237

Results of Practice Transformation

• Mathias et al. Diabetes Care 2022;45(10):2231-2237

Specific recommendations to promote CGM uptake

- Population-based approaches to identify and offer CGM
- Tailored education & support programs
- Develop virtual care models that involve key stakeholders
- Incorporate CGM into diabetes virtual care

• Vrany et al. Front Endocrinol (Lausanne). 2023 Jan 25;14:1083145. doi: 10.3389/fendo.2023.1083145.

Thank you!

Questions/Discussion