

Ohio Cardiovascular and Diabetes Health Collaborative

In partnership with:

ONID COLLEGES OF MEDICINE GOVERNMENT RESOURCE CENTER

OHIO

Heritage College of Osteopathic

CARDI-OH Ohio Cardiovascular & Diabetes Health Collaborative

Special populations: Patients with chronic mental illness

Thursday, November 19, 2020

Disclosure Statements

• The following planners, speakers, moderators, and/or panelists of the CME activity have financial relationships with commercial interests to disclose:

- Kathleen Dungan, MD, MPH receives consulting fees from Eli Lilly and Tolerion, institutional research fees from Eli Lilly, Novo Nordisk, and Sanofi Aventis, and presentation honoraria from Nova Biomedical, Integritas, and Uptodate.
- Siran M. Koroukian, PhD receives grant funds for her role as a co-investigator on a study funded by Celgene.
- Adam T. Perzynski, PhD reports being co-owner of Global Health Metrics LLC, a Cleveland-based software company and royalty agreements for book authorship with Springer Nature publishing and Taylor Francis publishing.
- Martha Sajatovic, MD receives grant support as PI of studies with Nuromate and Otsuka, study design consulting fees from Alkermes, Otsuka, Neurocrine, and Health, and publication development royalties from Springer Press and Johns Hopkins University.
- Christopher A. Taylor, PhD, RDN, LD, FAND reports grant funding for his role as a researcher and presenter for Abbott Nutrition and grant funding for research studies with both the National Cattleman's Beef Association and the American Dairy Association.
- Jackson T. Wright, Jr., MD, PhD reports research support from the NIH and Ohio Department of Medicaid and consulting with NIH, AHA, and ACC.
- These financial relationships are outside the presented work.
- All other planners, speakers, moderators, and/or panelists of the CME activity have no financial relationships with commercial interests to disclose.

Special populations: People with chronic mental illness (CMI)

Martha Sajatovic, MD

Professor, Departments of Psychiatry and Neurology, University Hospitals of Cleveland

Case Western Reserve University School of Medicine

Objectives

1) Describe the epidemiology and outcomes of diabetes among people with chronic mental illness (CMI).

2) Describe the impact of treatments for people with CMI, including atypical antipsychotic medications, on control and outcomes of diabetes.

3) List and describe a minimum of 3 strategies to improve control of diabetes among people with CMI

Medical comorbidity among individuals with chronic mental illness (CMI)

- CMIs such as recurrent depression, bipolar disorder and schizophrenia generally complicate general health outcomes
- CMI is often accompanied by <u>additional</u> mental health comorbidities such as substance abuse and PTSD
- CMI inflates costs
- CMI life-span reduced by 10-30 years.
- CMI have a 1.2 to 4.9 increase in mortality compared to age and sex-matched individuals from the general population resulting from DM, cardiovascular disease, and stroke.

Colton CW, Manderscheid RW. Preventing Chronic Disease 3: A42: 2006 Whiteman, K. L et al. *Psychiatric Services* 67(11), 1213–1225.2016 Walker, E. R. et al *JAMA psychiatry*, 72(4), 334–341. 2015

High-prevalence medical burden in CMI

Modifiable Risk Factors	Estimated Prevalence an	d Relative Risk (RR)
	Schizophrenia	Bipolar Disorder
Obesity ¹⁻⁵	45–55%, 1.5–2 × RR	21–49%, 1–2 × RR
Smoking ⁴⁻⁸	50–80%, 2–3 × RR	54–68%, 2–3 × RR
Diabetes ^{2, 8-11}	10–15%, 2 × RR	8–17%, 2 × RR
Hypertension ^{2-4, 7-9, 11}	19–58%, 2–3 × RR	35–39%, 2 × RR
Dyslipidemia ^{2, 4, 11-13}	25%, ≤ 5 × RR	23%, ≤ 5 × RR

- 1. Allison D, et al. J Clin Psychiatry. 1999;60(4):215-220;
- 2. Fagiolini A, et al. Bipolar Disord. 2005;7(5):424-430;
- McElroy S, et al. *J Clin Psychiatry*. 2002;63(3):207-213;
 Hennekens C, et al. *Am Heart J*. 2005;150(6):1115-1121;
- 5. Davidson S, et al. Aust N Z J Psychiatry. 2001;35(2):196-202;
- 6. Ucok A, et al. *Psychiatry Clin Neurosci.* 2004;58(4):434-437;
- 7. Herran A, et al. Schizophr Res. 2000;41(2):373-381;

- 8. Goff D, et al. Schizophr Res. 2005;80(1):45-53;
- 9. Dixon L, et al. J Nerv Ment Dis. 1999;87(8):496-502;
- 10. Cassidy F, et al. Am J Psychiatry. 1999;156(9):1417-1420;
- 11. Kilbourne A. Bipolar Disord. 2004;6(5):368-373;
- 12. Allebeck P. Schizophr Bull. 1989;15(1):81-89;
- 13. Koro C, et al. Arch Gen Psychiatry. 2002;59(11):1021-1026

Diabetes in those with CMI

- Prevalence of DM in people with schizophrenia, bipolar disorder or schizoaffective disorder is 2-3 fold higher vs. the general population
- Risk of DM in those with depression or depressive symptoms is 1.2-2.6x higher vs without depression
- Age of onset of DM in those with a CMI is 10-20 years earlier vs. the general population
- An increase in well-established DM risk factors in CMI patients partially accounts for much of the increased risk. However, additional factors (disease, treatment) are important as well.

Barnett AH, et al, J Psychopharmacol. 2007

Carnethon MR, et al, Am J Epidemiol. 2003

De Hert M, et al, Eur Psychiatry. 2009

McEvoy JP, et al Schizophr Res. 80(1):19-32.2005

Whiteman, K. L et al. Psychiatric Services 67(11), 1213–1225.2016

Factors which elevate DM risk in people with schizophrenia

Genetic susceptibility:

higher occurrence of DM in family members of people with schizophrenia abnormal glucose metabolism

common mechanism proposed for cognitive deficit and glucose metabolism

Neuroendocrine pathways:

hypothalamic axis dysregulation and elevated cortisol in schizophrenia nutritional deficiencies proposed as common pathway for both diseases

Antipsychotic medications:

effect on hypothalamic regulation, dopaminergic, serotonergic, and histaminergic receptors other proposed mechanisms: action on pancreatic muscarinic receptor and leptin resistance **Environmental/additional comorbidity:**

diet and lack of access to quality foods

inadequate physical activity due to symptoms and social isolation

Anamalie. Int J Endocrinology. Volume 2015 |Article ID 969182 | https://doi.org/10.1155/2015/969182

Assessing medical risk in CMI should include bio-behavioral variables

- Composite, CVD /general medical burden measures such as the Framingham Risk Score may not optimally assess risk in CMI.
- One review found Framingham not associated with <u>any</u> changes within multicomponent intervention models in adults with CMI. May relate to the fact that the Framingham Heart Study risk scores were determined with a sample that <u>excluded adults with CMI</u>.
- Risk prediction models that include bio-behavioral variables such as social deprivation, psychiatric diagnosis, prescriptions for antidepressants/antipsychotics, and alcohol use yielded better predictive risk models than the Framingham Risk Score for adults with CMI

BOTTOM LINE: "Standard" diabetes interventions and/or a focus entirely on biological variables may fail to account for key factors that contribute to DMI complications among those with CMI. This has important clinical care implications

AHRQ: <u>effectivehealthcare.ahrq.gov/ehc/products/377/1464/mental-illness-cardio-risk-executive-130422.pdf</u>.

D'Agostino RB, et al, Circulation. 2008

Osborn DP, et al, JAMA Psychiatry. 72(2):143-51.2015

Antipsychotic drugs and DM risk in CMI

CARDI**•OH**

- About 12% of people receiving antipsychotic drugs have DM
- Meta-analyses suggest the prevalence of DM is not appreciably increased in drugnaïve, first-episode CMI patients.
- Many (but not all) studies suggest second-generation antipsychotics (SGAs) have greater diabetogenic potential vs. first-generation antipsychotics (FGAs)
- Metabolic abnormalities accumulate rapidly after the initiation of treatment
- Antipsychotics may induce DM independent of adiposity, contributing to DM both indirectly, by inducing weight gain, and directly, by promoting insulin resistance
- Children and youth exposed to antipsychotics have a 3-fold increased risk of DM

Chesney E, et al World Psychiatry. 2014 Jun; 13(2):153-60.

Mitchell AJ, et al, Schizophr Bull. 2013 Mar; 39(2):295-305

Correll, C. U., et al, *World Psychiatry*, *14*(2), 119–136. 2015

Andreasson, Am J Psychiatry2017<u>https://doi.org/10.1176/appi.ajp.2017.17040409</u>

Antidepressant drugs and DM risk in CMI

- A meta-analysis found that antidepressants increased the likelihood of new-onset DM (OR = 1.50, 95% CI: 1.08-2.10; HR = 1.19, 95% CI: 1.08-1.32). However, because only observational studies were included in this analysis, a causal relationship could not be established
- Increased DM risk may be associated with use of tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs) (OR = 1.89)
- DM risk with antidepressants might be elevated with long-term use of TCA or SSRIs and/or in high-risk patients

Bhattacharjee S, et al, Diabetes Metab Res Rev. 29(4):273-84.2013

Brown LC, et al, Diabetes Res Clin Pract. 79(1):61-7.2008

Rubin RR, et al Diabetes Care. 2008 Mar; 31(3):420-6.

Supporting adults with comorbid DM & CMI

- Standard diabetes education needs to accommodate possible cognitive deficits and/or significant mood states that may make knowledge accumulation and retention challenging
- Prescribe psychotropic drugs that minimize metabolic/weight gain propensity
- Optimize outcomes of psychiatric comorbidity
- Self-management support that addresses bio-behavioral factors
- Collaborative or integrated care models that include behavioral medicine

Anamalie. Int J Endocrinology. Volume 2015 |Article ID 969182 |

https://doi.org/10.1155/2015/969182

https://store.samhsa.gov/sites/default/files/d7/priv/sma13-4780.pdf

Adverse effects of psychotropic drugs on physical health outcomes

Physical condition	Antipsychotics	Antidepressants	Mood stabilizers
Obesity	0/+ (haloperidol, lurasidone, ziprasidone, aripiprazole) to +++ (clozapine, olanzapine, low potency FGAs)	 – (bupropion) to + (mirtazapine, paroxetine, TCAs) 	0 (lamotrigine) to ++ (valproate, lithium)
Dyslipidemia	+ to ++	0 to + (if weight gain)	 – (valproate: cholesterol) to +
Diabetes	0/+ (haloperidol, lurasidone, ziprasidone, aripiprazole) to +++ (clozapine and olanzapine > low and mid potency FGAs)	0 to +	0 to ++ (valproate)
Hypertension	0 to ++	0 to + (venlafaxine)	0

- = reduction; 0 = likely/generally no effect; + = some effect; ++ = moderate effect; ++ = marked effect, ? = questionable FGAs – first-generation antipsychotics, SSRIs – selective serotonin reuptake inhibitors, TCAs – tricyclic antidepressants

Adapted from Correll, C. U., et al, World Psychiatry, 14(2), 119–136. 2015

Minimizing metabolic liability with antipsychotic & antidepressant drugs

- Young, drug-naïve patients are particularly vulnerable to weight gain
- Use SGAs with high metabolic liability (quetiapine,etc.) conservatively and limit off-label use
- Patients should be screened before drug initiation and monitored subsequently following standard guidelines, such as those provided by the ADA
- Patients with significant weight gain should be switched to a lower metabolic liability SGA.
- Metformin may help young patients with limited exposure to antipsychotic drugs if lifestyle interventions fail and switching the SGA is not an option. However, benefits may be modest
- For second-generation antidepressants (SGADs), paroxetine and mirtazapine are associated with weight gain
- Bupropion may cause modest weight loss.
- Other SGADs are mostly weight neutral, but individual variations may occur.

Hasnain M, Vieweg WV, Hollett B. Postgrad Med. 2012 Jul; 124(4):154-67

Table 1 – Metabolic monitoring parameters based on American Diabetes Association/ American Psychiatric Association consensus guidelines⁴

	Baseline	Week 4	Week 8	Week 12	Every 3 months thereafter	Annually
Medical history	X			X		X
Weight (BMI)	X	X	X	X	X	Х
Waist circumference	X			X		X
Blood pressure	X			X		X
Fasting glucose/hemoglobin A _{sc}	X			X		X
Fasting lipids	X			X		X

* Personal and family history of obesity, diabetes, hypertension, and cardiovascular disease.

Diabetes Care. 2004;27:596-601.

Piette and Kerr DM/Chronic disease comorbidity model

- <u>Concordant</u> comorbidity has similar pathogenesis/management (ex. Mental illness & DM)
- <u>Discordant</u> comorbidty has different pathogenesis/management (ex. Mental illness & musculoskeletal disorder)
- <u>Dominant</u> comorbidity (ex. Metastatic cancer) overshadows all other illnesses
- Concordant conditions may share underlying pathology such as inflammation. This may help in identifying "2-fer" treatments such as stress-management
- Identifying discordant comorbidity is essential and targeted approaches to comorbidity can improve both CMI and DM

Piette JD, Kerr EA. Diabetes Care 2006;29:725–731

Pentakota Diabetes Care June 2012 vol. 35 no. 6

Managing psychiatric comorbidity to optimize DM control

- 2006-2010 National Surveys on Drug Use and Health, found > 1/3 of people with DM age 18 -25 had past-month binge drinking, putting them at risk for DM complications.
- DM self-care behaviors are inversely correlated with alcohol consumption; rates of non-adherence among those who drink are ↑ starting at just 1 drink/day vs. abstinent patients. Treatment of substance use disorders may improve DM control.
- Depression predisposes to weight gain and is a risk factor for glucose dysregulation.
 Optimal treatment of depression improves glucose metabolism and makes it easier for patients to manage complex self-management plans.

Center for Behavioral Health Statistics and Quality. (2012, March 27). Substance Abuse and Mental Health Services Administration.

Ahmed, A. T., et al Diabetic Medicine, 23(7), 795-802.2006

Hasnain M, Vieweg WV, Hollett B. Postgrad Med. 2012 Jul; 124(4):154-67

Enhancing medical care with selfmanagement/multi-component support

- Chronic disease self-management (CDSM) is an evidencebased set of practices that are effective in improving the health of people with multiple morbidities
- CDSM approaches are acceptable to those with CMI
- Incorporating CDSM practices into standard clinical care may be a way to enhance uptake and impact
- nutrition and exercise counselling, behavioral modelling and increased disease awareness aiming to reduce HbA1c, fasting plasma glucose, BMI and weight can collectively show modest positive impact_{Lorig}, Ann Behav Med 2003;26(1):1–7., Chodosh, Ann Intern Med 2005;143:427–38, Gron et al. Primary Care Diabetes 2018DOI:<u>https://doi.org/10.1016/j.pcd.2018.03.008</u>

The Effectiveness of Pharmacological and Non-Pharmacological Interventions for Improving Glycaemic Control in Adults with Severe Mental Illness: A Systematic Review and Meta-Analysis

Taylor et al. *PloS one* vol. 12,1 e0168549. 5. 2017

Study name	Subgroup within study	Outcome	Stat	tistics for ea	ch study		Sample	size		Differen	ice in means and	95% CI		
			Difference in means	Standard error	Lower	Upper limit	Intervention	Control						Relativ
Forsberg 2008	Behavioural	HbA1c	0.140	0.236	-0.322	0.602	21	12	1	1		-1		28.
Gillhoff 2010	Behavioural	HbA1c	0.200	0.154	-0.102	0.502	26	24				-		65.
McKibbin 2006	Behavioural	HbA1c	0.100	0.505	-0.890	1.090	28	29		-			8	6.
			0.177	0.125	-0.068	0.422						-		
0.00		OFOI	danaa lataa		0 += 0 4	201			-1.50	-0.75	0.00	0.75	1.50	

Favours Intervention

Fasting blood glucose

Study name	Subgroup within study	Outcome	Stat	istics for ea	ch study	,	Sample size		
			Difference in means	Standard error	Lower	Upper limit	Intervention	Contro	
Attux 2013	Behavioural	Fasting glucose	-0.140	0.235	-0.601	0.321	60	66	
Cordes 2014	Behavioural	Fasting glucose	-0.170	0.205	-0.572	0.232	13	18	
Daumit 2013	Behavioural	Fasting glucose	-0.310	0.297	-0.891	0.271	96	95	
Forsberg 2008	Behavioural	Fasting glucose	0.010	0.352	-0.681	0.701	23	14	
Green 2015	Behavioural	Fasting glucose	-0.500	0.183	-0.859	-0.141	104	96	
Mauri 2008	Behavioural	Fasting glucose	0.000	0.230	-0.450	0.450	15	18	
Poulin 2007	Behavioural	Fasting glucose	-0.680	0.125	-0.925	-0.435	59	51	
Scheewe 2013	Behavioural	Fasting glucose	0.000	0.179	-0.351	0.351	29	25	
Wu 2007	Behavioural	Fasting glucose	-0.180	0.259	-0.687	0.327	28	25	
Wu 2008A	Behavioural	Fasting glucose	-0.300	0.070	-0.437	-0.163	32	32	
			-0.277	0.079	-0.433	-0.122			

28.14 65.73 6.13

HbA_{1c}

Studyname	Subgroup within study	Outcome	Sta	tistics for eac	h study	Sample size				
			Difference in means	Standard error	Lower	Upper limit	Intervention	Contro		
Debendt 2008	Anti-psychotic switching	HbAlic	-0.100	0.077	-0.251	0.051	65	68		
Fan 2013	Anti-psychotic switching	HbAlic	-0.330	0.189	-0.700	0.040	16	14		
Henderson 2009 A	Anti-psychotic switching	HbAte	-0.130	0.134	-0.392	0.132	B	7		
Karagianis 2009	Anti-psychotic switching	HbAto	0.000	0.348	-0.682	0.682	84	65		
4usumi 2012	Anti-psychotic switching	HbAlc	-0.200	0.143	-0.481	0.081	61	57		
Straup 2011	Anti-psychotic switching	HbAto	-0.100	0.043	-0.183	-0.017	89	96		
Baptista 2007	Diabetes medication	HbAtic	0.050	0.327	-0.992	0.682	33	31		
Baptista 2009	Diabetes medication	HbAte	-0.100	0.424	-0.991	0.731	13	14		
Carrizo 2009	Diabetes medication	HbAte	-0.100	0.046	-0.191	-0.009	24	30		
Henderson 2009 B	Diabetes medication	HbAte	0.700	0.142	0.421	0.979	8	10		
larskog 2013	Diabetes medication	HbAte	-0.070	0.036	-0.140	-0.000	75	71		
j 2013	Diabetes medication	HbAtc	0.160	0.104	-0.044	0.364	18	21		
Smith 2013 China	Diabetes medication	HbAlic	-0.420	0.253	-0.916	0.076	5	5		
Smith 2013 US	Diabates madication	HbAte	0.170	0.256	-0.332	0.672	25	19		
Borba 2011	Other	HbAtc	0.370	0.365	-0.346	1.086	14	6		
acks 2014	Other	HbAlic	0.050	0.117	-0.179	0.279	-40	21		
m 2013	Other	HbAte	-0.000	0.234	-0.458	0.498	48	36		
Tek 2014	Other	HbAte	0.940	0.323	0.308	1.572	11	12		
Reptista 2008	Weight loss and diabetes combination	HbAtc	0.430	0.456	-0.463	1.323	13	15		
koltmann 2012	Weight loss and diabetes combination	HbAtc	-0.050	0.058	-0.164	0.064	149	50		
Biodermann 2014	Weight loss medication	HbAtio	-0.500	0.154	-0.801	-0.199	5	6		
Henderson 2005	Weight loss medication	HbAtic	-0.700	0.283	-1.254	-0.146	19	18		
lenderson 2007	Weight loss medication	HbAtc	0.130	0.125	-0.115	0.375	10	8		
			-0.029	0.044	-0.115	0.098				

Test of significance: Z = -0.645, p = 0.52; Test of heterogeneity: I² = 68.577, p < 0.001*

Studyname	Subgroup within study	Outcome	Sta	tistics for eac	th study	Sample size		
			Difference in means	Standard error	Lower	Upper limit	Intervention	Contro
Bapti sta 2006	Metformin	Fasting glucose	-0.200	0.269	-0.728	0.328	19	18
Bapti sta 2007	Metormin	Fasting glucose	0.160	0.241	-0.313	0.633	36	36
Carrizo 2009	Metformin	Fasting glucose	0.110	0.279	-0.437	0.657	24	30
Chen 2013	Metormin	Fasting glucose	-0.800	0.256	-1.302	-0.298	28	27
Jarskog 2013	Matarmin	Fasting glucose	-0.040	0.108	-0.253	0.173	75	71
Mang 2012	Metformin	Fasting glucose	-0.200	0.125	-0.445	0.045	32	34
Mu 2006.A	Metormin	Fasting glucose	-0.250	0.053	-0.354	-0.146	64	64
Au 2008 B	Matormin	Fasting glucose	-0.010	0.119	-0.242	0.222	18	19
Borba 2011	Other	Fasting glucose	-0.290	0.505	-1.280	0.700	14	6
Fadai 2014	Other	Fasting glucose	-0.520	0.123	-0.760	-0.290	-40	21
falka-Pokarska 2015	Other	Fasting glucose	0.100	0.190	-0.272	0.472	23	22
.ee 2013	Other	Fasting glucose	-0.100	0.150	-0.394	0.194	48	36
±r2004	Other	Fasting glucose	-0.180	0.085	-0.347	-0.013	34	34
Modebbernia 2014	Other	Fasting glucose	-0.350	0.243	-0.826	0.126	18	18
Sapti sta 2006	Weight loss and diabetes combination	Fasting glucose	0.330	0.188	-0.03B	0.698	13	15
folimern 2012	Weight loss and diabetes combination	Fasting glucose	-0.200	0.110	-0.416	0.016	149	50
Debendt 2008	Arti-psycholic switching	Fasting glucose	-0.050	0.231	-0.502	0.402	65	6B
Armami-Weizman 2013	Weight loss medication	Fasting glucose	0.050	0.159	-0.261	0.361	25	29
fenderson 2007	Weight loss medication	Fasting glucose	0.630	0.761	-0.662	2322	10	8
loffe 2008	Weight loss medication	Fasting glucose	-0.090	0.342	-0.564	0.384	31	32
AcErcy 2012	Weight loss medication	Fasting glucose	0.200	0.143	-0.081	0.481	20	22
Varuka 2010	Weight loss medication	Fasting glucose	-0.570	0.133	-0.830	-0.310	-33	34
Fan 2013	Arti-psycholic switching	Fasting glucose	-0.370	0.434	-1.221	0.481	16	14
Reischhacker 2010	Arti-psycholic switching	Fasting glucose	-0.040	0.153	-0.340	0.260	96	87
Hendlerson 2009 A	Arti-psycholic switching	Fasting glucose	0.290	0.477	-0.654	1,214	8	7
Caragianis 2009	Arti-psycholic switching	Fasting glucose	0.100	0.132	-0.160	0.360	84	65
9.sumi 2012	Arti-psycholic switching	Fasting glucose	0.360	0.146	0.074	0.646	61	57
Vewcorner 2008	Arti-psycholic switching	Fasting glucose	-0.190	0.141	-0.466	0.086	80	76
Broup 2011	Arti-psycholic switching	Fasting glucose	-0.190	0.105	-0.396	0.016	-89	98
Marii 2015	Arti-psycholic switching	Fasting glucose	-0.330	0.219	-0.759	0.099	21	26
Bapti sta 2009	Diabetes medication	Fasting glucose	-0.070	0.147	-0.358	0.218	13	14
Hendlerson 2009 B	Diabetes medication	Fasting glucose	-0.170	0.326	-0.809	0.469	8	10
J 2013	Diabetes medication	Fasting glucose	0.440	0.267	-0.084	0.964	18	21
Smith 2013 China	Diabetes medication	Fasting glucose	-0.100	0.646	-1.367	1.167	5	5
Smith 2013 US	Diabetes medication	Fasting gluccee	-1.340	0.666	-2.646	-0.034	25	19
			-0.106	0.044	-0.191	-0.020	1343	1193

CARDI-OH Ohio Cardiovascular and Diabetes Health Collabo

7.53 3.52 5.15 1.39 4.82 892 1.54 0.98 8.79 4.86

9.15 6.33 2.33 2.29

1.96 5.48

Conclusions:

- People with CMI are a special population with more difficult DM management challenges
- Effective management includes:
- Minimizing metabolic liability of psychotropic drugs
- Prevention/self-management support for risk factor management (especially bio-behavioral factors!)
- Coordination between primary care and behavioral care providers
- Engaging patients in care that is long-term & sustaintable

Thank you!

Questions/Discussion