

Cardi-OH ECHO Innovations in Diabetes and Cardiovascular Health

January 26, 2023

Today's Presenters

FACILITATOR

Goutham Rao, MD Case Western Reserve University

DIDACTIC PRESENTER

Kathleen Dungan, MD, MPH The Ohio State University

LEAD DISCUSSANTS

Karen Bailey, MS, RDN, LD, CDCES Ohio University

Danette Conklin, PhD Case Western Reserve University

Kathleen Dungan, MD, MPH The Ohio State University

CASE PRESENTERS

Nathaniel Harris, MD UC Health West Chester Family Medicine

Kyle Smith, MSN Equitas Health

Disclosure Statements

- The following speakers have a relevant financial interest or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of their presentation*:
 - Danette Conklin, PhD; Kathleen Dungan, MD, MPH; Ian Neeland, MD; Adam T. Perzynski, PhD; Goutham Rao, MD; Christopher A. Taylor, PhD, RDN, LD, FAND; Yasir Tarabichi, MD; Jackson Wright, MD, PhD
- The remaining speakers have no financial relationships with any commercial interest related to the content of this activity:
 - Karen Bailey, MS, RDN, LD, CDCES; Kristen Berg, PhD; Elizabeth Beverly, PhD; Carolyn levers-Landis, PhD; Kelsey Ufholz, PhD; James Werner, PhD, MSSA
- The following members of the planning committee DO NOT have any disclosures/financial relationships from any ineligible companies:
 - Shari Bolen, MD; Richard Cornachione; Carolyn Henceroth; Gillian Irwin; Michael Konstan, MD; Elizabeth Littman; Devin O'Neill; Steven Ostrolencki; Ann Nevar; Claire Rollins; Catherine Sullivan

^{*} These financial relationships are outside the presented work.

^{**} For more information about exemptions or details, see www.acme.org/standards

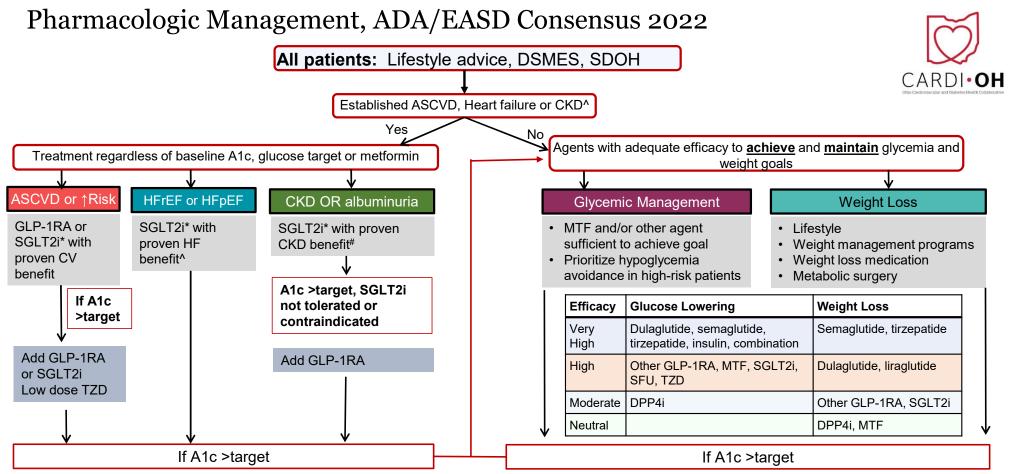
Person-Centered Language Recommendations

The ADA and the APA recommend language that emphasizes inclusivity and respect:

- <u>Gender</u>: Gender is a social construct and social identity; use term "gender" when referring to people as a social group. Sex refers to biological sex assignment; use term "assigned sex" when referring to the biological distinction.
- <u>Race</u>: Race is a social construct that is used broadly to categorize people based on physical characteristics, behaviors, and geographic location. Race is not a proxy for biology or genetics. Examining health access, quality, and outcome data by allows the healthcare system to assist in addressing the factors contributing to inequity.
- <u>Sexual Orientation</u>: Use the term "sexual orientation" rather than "sexual preference" or "sexual identity." People choose partners regardless of their sexual orientation; however, sexual orientation is not a choice.
- **Disability**: The nature of a disability should be indicated when it is relevant. Disability language should maintain the integrity of the individual. Language should convey the expressed preference of the person with the disability.
- <u>Socioeconomic Status</u>: When reporting SES, provide detailed information about a person's income, education, and occupation/employment. Avoid using pejorative and generalizing terms, such as "the homeless" or "poor."
- **<u>Violent Language</u>**: Avoid sayings like 'killing it,' 'pull the trigger,' 'take a stab at it,' 'off the reservation,' etc.

Flanagin A et al., 2021, JAMA; Dickinson JK et al., Diabetes Care, 2017; American Psychological Association, 2021; ODM, 2021. 7

Type 2 Diabetes: Emerging and Future Pharmacotherapies


Kathleen Dungan, MD, MPH

Professor and Associate Director of Clinical Services Division of Endocrinology, Diabetes & Metabolism The Ohio State University

Learning Objectives

- 1. List and describe currently available GLP-1 agonists and SGLT-2 inhibitor medications.
- 2. Describe the future landscape of diabetes pharmacotherapies.
- 3. Describe Medicaid coverage for newer diabetes pharmacotherapies

[^]Empagliflozin/dapagliflozin have shown benefit in dedicated HF studies. Canagliflozin/ertugliflozin demonstrated reduction in hospitalization for HF in CV outcomes trials. [#]Dapagliflozin/canagliflozin demonstrated benefit in dedicated renal studies. Empagliflozin demonstrated reduction in CKD progression in CV outcomes trials. *start if eGFR >20 ml/min/1.73 m2, continue until HD or transplant

DSMES=diabetes self-management education and support, ASCVD=atherosclerotic cardiovascular disease, HFrEF=heart failure with reduced ejection fraction, HFpEF=heart failure with preserved ejection fraction, CKD=chronic kidney disease, GLP-1RA=glucagon-like peptide-1 receptor agonist, SGLT2i=sodium-glucose cotransporter-2 inhibitor, TZD=thiazolidinedione, SFU=sulfonylurea,

Davies et al. Diabetologia. 2022;65(12):1925-1966. doi: 10.1007/s00125-022-05787-2.

GLP-1 Receptor Agonists

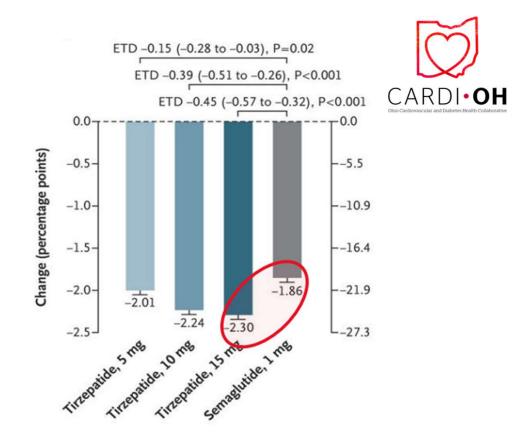
Generic Name	Brand Name	Dose Forms	Dosing Interval	Cautions
Exenatide BID	Byetta	5, 10 µg	BID	
Lixisenatide	Lyxumia	10, 20 µg	Daily	
Liraglutide	Victoza	1.6, 1.2, 1.8 mg	Daily	C-cell tumors/ MEN-2
Exenatide QW	Bydureon	2 mg	Weekly	advanced CKD gastroparesis
Semaglutide	Ozempic	0.5, 1.0 mg	Weekly	pancreatitis?
Semagiulue	Rybelsus	3, 7, 14 mg PO	Daily	
Dulaglutide	Trulicity	0.75, 1.5 mg	Weekly	

- No inherent hypoglycemia
- Modest weight and BP reduction
- Nausea/vomiting, usually self-limited

GLP-1 R Activation

Intermittent

Continuous: better A1C reduction, better tolerability


SGLT2 Inhibitors

Name	Starting Dose	Max Dose	Primary Effect	Cautions
Canagliflozin (Invokana®)	100 mg daily	300 mg daily		UG infection fluid/electrolyte
Empagliflozin (Jardiance®)	10 mg daily	25 mg daily	Block renal	
Dapagliflozin (Farxiga®)	5 mg daily	10 mg daily	glucose reabsorption	euglycemic DKA Amputation? (C)
Ertugliflozin (Steglatro®)	5 mg daily	15 mg daily		

- Modest blood pressure, weight reduction
- No hypoglycemia
- Small rise in Cr early but long-term renoprotection

Tirzepatide

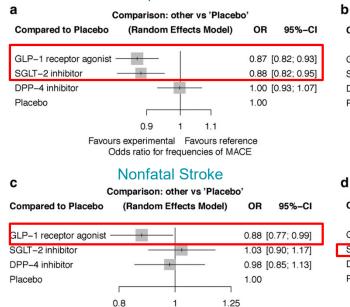
- GLP-1/GIP analogue
- Superior A1C/weight loss/QOL vs. semaglutide 1.0 mg
- Similar tolerability
- No comparisons with semaglutide 2 mg or higher
- No CV outcomes data (yet)

N=1878, 40 week RCT Additional 5.5 kg weight loss vs. semaglutide

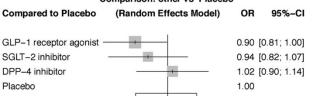
Frias JP et al. N Engl J Med 2021; 385:503-515.

SGLT2i or GLP-1 RA?

SGLT2i


- ASCVD, HF benefit
- Renal benefit
- Minimal A1C reduction at lower eGFR

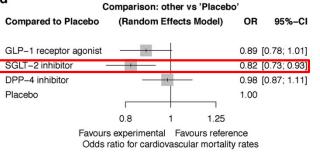
GLP-1 RA


- ASCVD, especially stroke benefit
- Possible renal benefit
- Greater A1C reduction

Weight loss in both No hypoglycemia in either Meta-Analyses of CVOTs

3-point MACE

Nonfatal MI Comparison: other vs 'Placebo'



1 Favours experimental Favours reference Odds ratio for frequencies of nonfatal myocardial infarction

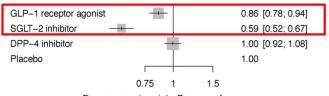
09

CV Death

1.1

HF Hospitalization

t


α

Comparison: other vs 'Placebo' **Compared to Placebo** (Random Effects Model) OR 95%-CI GLP-1 receptor agonist + 0.87 [0.82; 0.93] SGLT-2 inhibitor 0.68 [0.61: 0.77] 100 DPP-4 inhibitor 1.06 [0.96; 1.18] Placebo 1.00 0.75 1.5

Favours experimental Favours reference Odds ratio for frequencies of hospitalisation for heart failure

Renal Composite Outcome

9	Comparison: other vs 'Placebo)'	
Compared to Placebo	(Random Effects Model)	OR	95%-CI

Favours experimental Favours reference Odds ratio for frequencies of renal composite outcome

Meta-analysis of CV outcomes trials

Favours experiemental Favours reference

Odds ratio for frequencies of nonfatal stroke

Did not include CAROLINA, REWIND, PIONEER 6 or VERTIS

Fei et al. Cardiovasc Diabetol. 2019;18(1):112.

Future Therapies

- Once weekly basal insulin (lcodec)
- Glucose responsive insulin
- Combined peptides: GLP-1/GIP, GLP-1/glucagon receptor dual agonist, GLP-1/glucagon/GIP

• Others

- o Glucagon receptor antagonist
- o G-protein-coupled receptor ligands
- Hormone/enzyme/receptors
- PPARs: insulin sensitizers
- o Glimins: correction of mitochondrial dysfunction

Future Approaches

- Adult-onset DM sub-types¹
- Precision medicine:²
 - Patient-level markers predict response to therapy, complications
 - o Emphasis on clinical utility, equity
- Early combination therapy in some patients at treatment initiation to extend the time to treatment failure.^{3,4}
- Connected devices for monitoring and treatment

^{1.} Ahlqvist et al. Lancet Diabetes Endocrinol. 2018;6(5):361-369.

^{2.} Nolan et al. ADA/EASD Precision Medicine in Diabetes Initiative. Diabetes Care. 2022;45(2):261-266.

^{3.} Davies et al. ADA Standards of Care. Dia Care 2022;45(Suppl. 1):S125–S143.

^{4.} Garber et al. AACE Consensus Statement. Endocr Pract 2019;25(1):69-100.

Table 1. 2022 Ohio Medicaid Preferred Diabetes Formulary As of July 2022

Drug Class	Preferred		
Non-Insulin			
Metformin and combination	 Metformin in combination with Pioglitazone Glyburide Canagliflozin, empagliflozin Sitagliptin, linagliptin Repaglinide Metformin ER (Glucophage XR) 		
Sulphonylurea SFU	glimepiride, glipizide, glyburide		
Glucagon-like peptide-1 receptor agonist GLP-1 RA	Byetta (exenatide), Trulicity (dulaglutide), Victoza (liraglutide)		
Sodium-glucose cotransporter-2 inhibitor SGLT2i	Farxiga (dapagliflozin), Invokana (canagliflozin), Jardiance (empagliflozin)		
Dipeptidyl peptidase-4 inhibitor DPP-4i	Januvia (sitagliptin), Tradjenta (linagliptin)		
Thiazolidinedione TZD	pioglitazone		
Alpha glucosidase inhibitor AGI	acarbose, miglitol		
Glinide	nateglinide, repaglinide		

- No step therapy is required for most medications on formulary
- Continuous glucose monitors are now covered without the need for prior authorization

Insulin	
Basal	Lantus (glargine), Levemir (detemir), Toujeo (glargine U-300), Tresiba (degludec) ^s
Bolus	Apidra (glulisine), aspart, Humalog (lispro) U-100, Humulin R (regular insulin) U-500, lispro, Novolog (aspart) U100
Premix	Humalog 50/50 (lispro protamine/lispro), Humalog 75/25 (lispro protamine/lispro), Humulin 70/30 (insulin isophane/regular insulin), aspart protamine/aspart, Novolog 70/30 (aspart protamine/aspart)

^s Step therapy

cardi-oh.org/capsules/25-simplified-prescription-of-diabetes-technology-and-medications

Thank you!

Questions/Discussion